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Comments on “On the Relationship Between TLM
and Finite-Difference Methods for
Maxwell’s Equations”

WOICIECH K. GWAREK

In the above paper,* Mr. Johns compares the finite-difference
time-domain (FD-TD) and transmission-line matrix (TLM)
methods and concludes that:

In the three-dimensional TLM method operated in the above way, there
are three field quantities available at each shunt and series node. This. for
example, allows the boundary description for TLM to be twice as fine as
for fimte differences. In two dimensions, 1f boundanes are described only
at nodes as in finite differences, the incident pulses need only be at
alternate nodes at any instant. Thus, an average of two stores for link
lines, not four, 1s requred at each node.

The above statements are misleading since they suggest that in
the FD-TD algorithm the boundary must coincide with the
nodes. In fact, the parameters of the meshes situated at the
boundary can be modified to simulate its particular shape. Such a
boundary matching procedure for the general three-dimensional
case is difficult to introduce and has not been reported yet, but
for two dimensions it was introduced in [1]. My experience shows
that, using the procedure described in [1], it is possible to
compare two 2-D circuits differing in size by less than 0.1 of the
mesh size (which is clearly not possible when using a TLM
algorithm).

In general, the TLM method has a fundamental restriction on
possible boundary shapes, requiring that the boundary pass
through the nodes or through the points in the middle between
them. Such a restriction is necessary to synchronize the incident
and reflected pulses. The FD-TD algorithm does not have such a
basic restriction, allowing a wide range of boundary matching
procedures (although they may be difficult to implement).

The above remarks, critical to some of Mr. Johns’s statements,
do not undermine but rather support his final conclusion that
“the TLM method and the finite difference method complement
each other rather than compete with each other. Each leads to
better understanding of the other.”

Reply® by Peter B. Johns’

I would like to thank Dr. Gwarek for his interest and com-
ments on my paper and I am pleased to have the opportunity of
attempting to clarify points that have been misleading.

In my paper, I tried to show that the solution of certain
transmission-line network models for electromagnetic fields could
be expressed in terms of differences of the nodal or total field
quantities only. Thus under particular conditions it is possible to
eliminate the incident and reflected field quantities and obtain a
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conventional difference equation which gives numerically exactly
the same numbers as a TLM routine. It was under these condi-
tions, which are restricted, of course, that I was attempting to
make detailed comparisons of the boundary description.

Dr. Gwarek, I think, is widening the comparison to areas
where the methods may not result in exactly the same numbers at
the network nodes or indeed where the network graphs may not
be the same. Much greater care needs to be taken in making
comparisons under these conditions, and certainly the advantages
of different models depend very much on the application.

The description of boundaries in methods like finite dif-
ferences has always been of interest and unequal arms were
described a long time ago ([2], for example). A similar procedure
for TLM where boundaries were modeled at an infinitely variable
distance in the discretization mesh was described very early in the
development of the method [3]. Variable meshes [4], which allow
considerable flexibility in boundary placement, have been in use
for a long time in two and three dimensions, and the modeling of
boundaries at shallow angles to a general orthogonal mesh has
also been briefly discussed [5]. Unfortunately the theory for
determining whether the TLM method corresponds exactly to a
finite-difference method for these types of modeling techniques
has not been fully developed.

In the paper referred to by Dr. Gwarek [1}, he draws the
analogy between electromagnetic field equations and the equa-
tions of a lumped network. In his paper he describes, in effect,
how the network equivalent for a regular square grid discretiza-
tion can be modified to take account of the boundary shape. In
Dr. Gwarek’s comment, some confusion may be arising between
the “nodes” of the original square mesh used for discretization
and the nodes of the graph of the network modeling the boundary.
As indicated above, the parameters in TLM may also be mod-
ified to simulate a boundary shape in an infinitely variable way.
Both the TLM procedure and the finite difference procedure,
however, are operated in terms of the node and branch variables
of their network graphs.

TLM can be applied to the solution of quite arbitrary lumped
networks [6]; it should be pointed out, therefore that Dr. Gwarek’s
boundary model lumped network can be solved in the time
domain by TLM using link and stub transmission lines. For his
boundary network model, it is likely that the finite-difference
routine described by Dr. Gwarek gives the voltages at the net-
work nodes and the currents in the branches half way between
the network nodes only. The TLM routine would give the voltage
and all branch currents at the nodes of the same network graph
and the voltage and current on the branches half way between.
This means that scattering could be introduced half way between
the nodes simply by altering the scattering matrix at the nodes.
However, the numbers obtained by the TLM method may not be
exactly the same as the numbers obtained by the finite-difference
routine because the restrictive condition on the global scattering
matrix given in my paper may not apply.

However, I would like to emphasize most strongly that while
comparisons in computer resources between finite differences
and TLM (under the restricted conditions mentioned) may be
interesting, the important difference n the methods, in my opin-
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ion, is the difference in modeling philosophy. Some engineers
prefer to think of time-domain discretization through mathemati-
cal finite differencing; others prefer to model with transmission-
line networks. Comfort in the modeling concept is far more likely
to lead the modeler to more advanced models, as is illustrated by
Dr. Gwarek in his interesting paper [1].
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Indefinite Integrals Useful in the Analysis of
Cylindrical Dielectric Resonators

DARKO KAJFEZ

Abstract —Little-known integrals are listed, useful for the evaluation of
stored electric energy in cylindrical regions, such as often appear in the
analysis of cylindrical dielectric resonators.

In the analysis of shielded dielectric resonators, it is often
necessary to evaluate the stored electric or magnetic energy
within a cylindrical region, such as regions 1, 2, and 3 in Fig. 1.
The components of the electric field in region 1 are typically
expressed in terms of the function

¢, (kp) =K, (kp)+ al,(kp) ey

where K,,(kp) and I,,(kp) are the modified Bessel functions of
order m, k is the radial wavenumber for the corresponding
region, and a is a constant such that the tangential electric field
vanishes at p = b. The boundary conditions at z=0and z=L
are not important in the present consideration. Either of these
two surfaces may be covered with a perfect electric conductor or,
alternatively, form an interface with a neighboring dielectric
region.

When the stored electric energy in region 1 is required, the
following indefinite integral is needed:

2

f[ & (ko) + pEx L. (ke)|pdo=W(p). (2
The solution W(p) cannot be found in common mathematical
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Fig. 1. Cylindrical region filled with inhomogeneous dielectric materials.

handbooks [1], [2]. Nevertheless, the solution exists as follows:

W(p) = % [«p:,,z(kp) + kipd)m(kp)%(kp)

—(1+ k’fpz)¢3n(kp)]. ©)

When a =0, the result reduces to

f[K’z(kp)erKz(kp)]pdp

2
P ) 2
= — ’ 4+ — . ’
5 [Km (kp) kam(kp)Km(kp)

—(1+ ,:’Ipz)x,%,(kp)]. )

The last formula can be found in [3], unfortunately distorted by
typographical errors. This formula is useful when radius b of the
cylindrical enclosure becomes infinitely large.

The proof of the above formulas consists of taking the deriva-
tive of the right-hand side of (3), and showing that

d—viliﬂ [¢'2(kp)+ o 2<z>m(kp)J. (%)

The derivation of the above identity is based on the fact that
®’(kp), being a linear combination of modified Bessel func-
tions, satisfies

2

¢”(kp)—~—¢’(kp)+(1+k’;lz)¢m(kp)- (6)

Another, similar identity can be obtained for ordinary Bessel
functions, needed for evaluation of the stored energy in region 2:

f[zl/z(kp)Jr e 2\P2(kp)]pdp V(p) @)

where ¢,,(kp) is a linear combination of the ordinary Bessel
functions:

Ym(kp) =J.(kp) + BY, (kp). (3
The corresponding solution is

V(o) =% [¢;3(kp)+ (k) Vi)

+( k"Zz)xpz(kp)} ®)
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