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Letters

Comments on “On the Relationship Between TLM

and Finite-Difference Methods for

Maxwell’s Equations”

WOJCIECH K. GWAREK

In the above paper; Mr. Johns compares the finite-difference

time-domain (FD-TD) and transmission-line matrix (TLM)

methods and concludes that:

In the three-dimensional TLM method operated in the above way, there

are three field quantities available at each shunt and series node, This. for

example, atlows the bounday description for TLM to be twice as fme as

for fuute differences. In two dimensions, If boundanes are described only

at nodes as m finite differences, the incident pulses need only be at

alternate nodes at any instant. Thus, an average of two stores for lmk

lines, not four, M reqtnred at each node.

The above statements are misleading since they suggest that in

the FD–TD algorithm the boundary must coincide with the

nodes. In fact, the parameters of the meshes situated at the

boundary can be modified to simulate its particular shape. Such a

boundary matching procedure for the generaf three-dimensionaf

case is difficult to introduce and has not been reported yet, but

for two dimensions it was introduced in [1]. My experience shows

that, using the procedure described in [1], it is possible to

compare two 2-D circuits differing in size by less than 0.1 of the

mesh size (which is clearly not possible when using a TLM

algorithm).

In general, the TLM method has a fundamental restriction on

possible boundary shapes, requiring that the boundary pass

through the nodes or through the points in the middle between

them, Such a restriction is necessary to synchronize the incident

and reflected pulses. The FD–TD algorithm does not have such a

basic restriction, allowing a wide range of boundary matching

procedures (although they may be difficult to implement).

The above remarks, cnticaf to some of Mr. Johns’s statements,

do not undermine but rather support his finaf conclusion that

“ the TLM method and the finite difference method complement

each other rather than compete with each other. Each leads to

better understanding of the other.”

Repfy2 by Peter B. Johns3

I would like to thank Dr. Gwarek for his interest and com-

ments on my paper and I am pleased to have the opportunity of

attempting to clarify points that have been misleading.

In my paper, I tried to show that the solution of certain

transmission-line network models for electromagnetic fields could

be expressed in terms of differences of the nodal or total field

quantities only. Thus under particuku conditions it is possible to

eliminate the incident and reflected field quantities and obtain a
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conventional difference equation which gives numerically exactly

the same numbers as a TLM routine. It was under these condi-

tions, which are restricted, of course, that I was attempting to

make detailed comparisons of the boundary description.

Dr. Gwarek, I think, is widening the comparison to areas

where the methods may not result in exactly the same numbers at

the network nodes or indeed where the network graphs may not

be the same. Much greater care needs to be taken in making

comparisons under these conditions, and certainly the advantages

of different models depend very much on the application.

The description of boundaries in methods like finite dif-

ferences has always been of interest and unequaf arms were

described a long time ago ([2], for example). A similar procedure

for TLM where boundaries were modeled at an infinitely variable

distance in the discretiation mesh was described very early in the

development of the method [3]. Variable meshes [4], which allow

considerable flexibility in boundary placement, have been in use

for a long time in two and three dimensions, ~~d the modeling of

boundaries at shallow angles to a generaf orthogonal mesh has

also been briefly discussed [5]. Unfortunately the theory for

determining whether the TLM method corresponds exactly to a

finite-difference method for these types of modeling techniques

has not been fully developed.

In the paper referred to by Dr. Gwarek [1], he draws the

analogy between electromagnetic field equations and the equa-

tions of a lumped network. In his paper he describes, in effect,

how the network equivalent for a regular square grid discretiza-

tion cart be modified to take account of the boundary shape. In

Dr. Gwarek’s comment, some confusion may be arising between

the “nodes” of the original square mesh used for discretization

and the nodes of the graph of the network modeling the boundary.

As indicated above, the parameters in TLM may also be mod-

ified to simulate a boundmy shape in au infinitely variable way.

Both the TLM procedure and the finite difference procedure,

however, are operated in terms of the node and branch variables

of their network graphs.

TLM can be applied to the solution of quite arbitrmy lumped

networks [6]; it should be pointed out, therefore that Dr. Gwarek’s

boundary model lumped network can be solved in the time

domain by TLM using link and stub transmission lines. For his

boundary network model, it is likely that the finite-difference

routine described by Dr. Gwarek gives the voltages at the net-

work nodes and the currents in the branches half way between

the network nodes only. The TLM routine would give the voltage

and all branch currents at the nodes of the same network graph

and the voltage and current on the branches half way between.

This means that scattering could be introduced half way between

the nodes simply by altering the scattering matrix at the nodes.

However, the numbers obtained by the TLM method may not be

exactly the same as the numbers obtained by the finite-difference

routine because the restrictive condition on the global scattering

matrix given in my paper may not apply.

However, I would like to emphasize most strongly that while

comparisons in computer resources between finite differences

and TLM (under the restricted conditions mentioned) may be

interesting, the important difference m the methods, in my opin-
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ion, is the difference in modeling philosophy. Some engineers

prefer to think of time-domain discretization through mathemati-

cal finite differencing; others prefer to model with transmission-

line networks. Comfort in the modeling concept is far more likely

to lead the modeler to more advanced models, as is illustrated by

Dr. Gwarek in his interesting paper [1].
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Indefinite Integrals Useful in the Analysis of

Cylindrical Dielectric Resonators

DARKO KAJFEZ

Abstract —Little-known integrafs are fisted, useful for the evacuation of

stored electric energy in cylindrical regions, such as often appear in the

analysis of cylindrical dielectric resonators.

In the analysis of shielded dielectric resonators, it is often

necessary to evaluate the stored electric or magnetic energy

within a cylindrical region, such as regions 1, 2, and 3 in Fig. 1.

The components of the electric field in region 1 are typically

expressed in terms of the function

d%(~P) =h(~P)+%(~P) (1)

where Kw ( kp ) and ~m( kp ) are the modified Bessel functions of

order m, k is the radial wavenumber for the corresponding

region, and a is a constant such that the tangential electric field

vanishes at p = b. The boundary conditions at z = O and z = L

are not important in the present consideration. Either of these
two surfaces may be covered with a perfect electric conductor or,
alternatively, form an interface with a neighboring dielectric
region.

When the stored electric energy in region 1 is required, the
following indefinite integral is needed:

J
The solution

1@L2(b)+$#t(kdP4=W(P). (2)

W(p) cannot be found in common mathematical
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Fig. 1. Cylindrical region filled with inbomogeneous dielectric materials.

handbooks [1], [2]. Nevertheless, the solution exists as follows:

When a = O, the result reduces to

J[ m2

1K;2(kp)+~K; (kp) P~P

(3)

[
“=; K~2(kp)+ ;K#p)K~(kp)

-(l+*)K’’kp)l

(4)

The last formula can be found in [3], unfortunately distorted by

typographical errors. This formula is useful when radius b of the
cylindrical enclosure becomes infinitely large.

The proof of the> above formulas consists of taking h.e deriva- .

tive of the right-hand side of (3), and showing that

dW(p)

[ 1
— =P’+~z(kp)+~~:(k~) .

dp
(5)

The derivation of the above identity is based on the fact that
O; ( kp), being a linear combination of modified Bessel func-

tions, satisfies

Another, similar identity can be obtained for ordinary Bessel
functions, needed for evaluation of the stored energy in region 2:

/[ 1$ti(hd+~+:(kdPdP=V(P) (7)

where i., ( kp ) is a linear combination of the ordinary Bessel
functions:

$v,(kp) =.l~(kp)+/3Ym(kp). (8)

The corresponding solution is

[
v(p) =; $:(kp)+:Wn(b)WJW

+(1-~)!;(kp,] (9)
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